64 research outputs found

    Dynamic Origin-Destination Matrix Estimation with Interacting Demand Patterns

    Get PDF
    It has become very fashionable to talk about Mobility as a Service, multimodal transport networks, electrified and green vehicles, and sustainable transportation in general. Nowadays, the transportation field is exploring new angles to solve mobility issues, applying concepts such as using machine learning techniques to profile user behaviour. While for many years “traffic pressure” and “congestion phenomena” were the most established keywords, there is now a widespread body of research pointing out how new technologies alone will solve most of these issues. One of the main reasons for this change of direction is that earlier approaches have been proven to be more “fair” than “effective” in tackling mobility issues. The main limitation was probably to rely on simple assumptions, such as in-elastic mobility travel demand (car users will stick to their choice), when modelling travel behaviour. However, while these assumptions were questionable twenty years ago, they simply do not hold in today's society. While it is still true that high-income people usually own a car, the concept of urban mobility evolved. First, new generations are likely to buy a car ten-twenty years later than their parents. Second, in many cases, users can choose options that are more effective by combining different transport modes. Wealthy people might decide to live next to their working place or to the city centre, rather than to buy a car. Thus, it becomes clear that to understand the evolution of the mobility demand we need to question some of these assumptions. While data can help in understanding this societal transformation, we argue in this dissertation that they cannot be considered as the sole source of information for the decision maker. Although data have been there for many years, congestion levels are increasing, meaning that data alone cannot solve the problem. Although successful in many case studies, data-driven approaches have the limitation of being capable of modelling only what they observed in the past. If there is no record of a specific event, then the model will simply provide a biased information. In this manuscript we point out that both elements – data and model – are equally relevant to represent the evolution of a transport system, and specifically how important is to consider the heterogeneity of the mobility demand within the modelling framework in order to fully exploit the available data. In this manuscript, we focus on the so-called Dynamic Demand Estimation Problem (DODE), which is the problem of estimating the mobility demand patterns that are more likely to best fit all the available traffic data. While this dissertation still focuses on car-users, we stress that the activity based structure of the demand needs to be explicitly represented in order to capture the evolution of a transport system. While data show a picture of the reality, such as how many people are travelling on a certain road segment or even along a certain path, this information represents a coarse aggregation of different individuals sharing a common resource (i.e. the infrastructure). However, the traffic flow is composed of different users with different trip purposes, meaning they react differently to a certain event. If we shut down a road from one day to another, commuting and not commuting demand will react in a different way. The same concept holds when dealing with different weather conditions, which also lead to a different demand pattern with respect to the typical one. This dissertation presents different frameworks to solve the DODE, which explicitly focus on the estimation of the mobility demand when dealing with typical and atypical user behaviour. Although the approach still focuses on a single mode of transport (car-users), the proposed formulation includes the generalized travel cost within the optimization framework. This key element allows accounting for the departure time choice and, in principle, it can be extended to the mode choice in future work. The methodologies presented in this thesis have been tested with a “state of the practice” dynamic traffic assignment model. Results suggest that the models can be used for real-life networks, but also that more efficient algorithm should be considered for practical implementations in order to unleash the full potential of this new approach

    A low dimensional model for bike sharing demand forecasting

    Full text link
    Big, transport-related datasets are nowadays publicly available, which makes data-driven mobility analysis possible. Trips with their origins, destinations and travel times are collected in publicly available big databases, which allows for a deeper and richer understanding of mobility patterns. This paper proposes a low dimensional approach to combine these data sources with weather data in order to forecast the daily demand for Bike Sharing Systems (BSS). The core of this approach lies in the proposed clustering technique, which reduces the dimension of the problem and, differently from other machine learning techniques, requires limited assumptions on the model or its parameters. The proposed clustering technique synthesizes mobility data quantitatively (number of trips) and spatially (mean trip origin and destination). This allows identifying recursive mobility patterns that - when combined with weather data - provide accurate predictions of the demand. The method is tested with real-world data from New York City. We synthesize more than four million trips into vectors of movement, which are then combined with weather data to forecast the daily demand at a city-level. Results show that, already with a one-parameters model, the proposed approach provides accurate predictions.Comment: 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Assessing the consistency between observed and modelled route choices through GPS data

    Get PDF
    In traffic engineering, different assumptions on user behaviour are adopted in order to model the traffic flow propagation on the transport network. This paper deals with the classical hypothesis that drivers use the shortest possible path for their trip, pointing out the error related to using such approximation in practice, in particular in the context of dynamic origin-destination (OD) matrix estimation. If this problem is already well known in the literature, only few works are available, which provide quantitative and empirical analysis of the discrepancy between observed and modelled route sets and choices. This is mainly related to the complexity of collecting suitable data: to analyse route choice in a systematic way, it is necessary to have observations for a large period of time, since observing trajectories for the single user on a specific day could not be enough. Information is required for several days in order to analyse the repetitiveness and understand which elements influence this choice. In this work the use of the real shortest path for a congested network is evaluated, showing the differences between what we model and what users do. Results show that there is a systematic difference between the best possible choice and the actual choice, and that users clearly consider route travel time reliability in their choice process.In traffic engineering, different assumptions on user behaviour are adopted in order to model the traffic flow propagation on the transport network. This paper deals with the classical hypothesis that drivers use the shortest possible path for their trip, pointing out the error related to using such approximation in practice, in particular in the context of dynamic origin-destination (OD) matrix estimation. If this problem is already well known in the literature, only few works are available, which provide quantitative and empirical analysis of the discrepancy between observed and modelled route sets and choices. This is mainly related to the complexity of collecting suitable data: to analyse route choice in a systematic way, it is necessary to have observations for a large period of time, since observing trajectories for the single user on a specific day could not be enough. Information is required for several days in order to analyse the repetitiveness and understand which elements influence this choice. In this work the use of the real shortest path for a congested network is evaluated, showing the differences between what we model and what users do. Results show that there is a systematic difference between the best possible choice and the actual choice, and that users clearly consider route travel time reliability in their choice process

    Incorporating trip chaining within online demand estimation

    Get PDF
    Time-dependent Origin–Destination (OD) demand flows are fundamental inputs for Dynamic Traffic Assignment (DTA) systems and real-time traffic management. This work introduces a novel state-space framework to estimate these demand flows in an online context. Specifically, we propose to explicitly include trip-chaining behavior within the state-space formulation, which is solved using the well-established Kalman Filtering technique. While existing works already consider structural information and recursive behavior within the online demand estimation problem, this information has been always considered at the OD level. In this study, we introduce this structural information by explicitly representing trip-chaining within the estimation framework. The advantage is twofold. First, all trips belonging to the same tour can be jointly calibrated. Second, given the estimation during a certain time interval, a prediction of the structural deviation over the whole day can be obtained without the need to run additional simulations. The effectiveness of the proposed methodology is demonstrated first on a toy network and then on a large real-world network. Results show that the model improves the prediction performance with respect to a conventional Kalman Filtering approach. We also show that, on the basis of the estimation of the morning commute, the model can be used to predict the evening commute without need of running additional simulations

    A Markov Chain Monte Carlo Approach for Estimating Daily Activity Patterns

    Get PDF
    Determining the purpose of trips brings is a fundamental information to evaluate travel demand during the day and to predict longer-term impacts on the population’s travel behavior. The concept of tours is the most suited to consider the value of a daily scheduling of individuals and travel interdependencies. However, the meticulous care required for both collecting data of high quality and interpret results of advanced demand models are frequently considered as major drawbacks. The objective of this study is to incorporate into a standard trip-based model some inherent concepts of activity-based models in order to enhance the representation of travel behavior. The main focus of this work is to infer, employing utility theory, the trip purpose of a population, at a zonal level. Making use of Markov Chain Monte Carlo, a set of parameters is estimated in order to retrieve tour-based primitives of the demand. The main advantage of this methodology is the low requirements in terms of data, as no individual information are used, and the good interpretation of the model. Estimated parameters of the priors set a utility-based probability function for departure time, which allows to have a dynamic overview of the demand. In order to account for the tour consistency of travel decisions, a duration constraint is added to the model. The proposed model is applied to the region of Luxembourg city and the results show the potential of the methodologies for dividing an observed demand based on the activity at destination

    Car-Sharing Subscription Preferences and the Role of Incentives: The Case of Copenhagen, Munich, and Tel Aviv-Yafo

    Get PDF
    Car-sharing services provide short-term car access, contributing to sustainable urban mobility and generating positive societal and environmental impacts. Attraction and retention of members are essential for the profitability and survival of these services in cities. Yet, the relevance of a variety of possible business models’ features for car-sharing subscriptions is still under-explored. This study examines individuals’ preferences for subscribing to different car-sharing business models, focusing on the attractiveness of car-sharing-related features and incentives in different contexts. We designed a stated preference experiment and collected data from three different urban car-sharing settings: Copenhagen, Munich, and Tel Aviv-Yafo. A mixed logit model was estimated to uncover the determinants of each city’s car-sharing plan subscription. The achieved insights pave the road for the actual design of car-sharing business models and attractive incentives by car-sharing companies in the studied or similar cities. Our findings reveal that although some car-sharing intrinsic features are likely to be relevant everywhere (e.g., pricing, parking conditions), the local context affects the preferences of others. In Munich, respondents prefer car-sharing services with fleets composed of electric vehicles and value high accessibility to shared cars, so marketing campaigns focusing on the positive environmental impacts of car-sharing and strategic distribution of shared cars (e.g., hubs) are expected to be very appealing there. As for Copenhagen, a high probability of finding a car, the opportunity to book a shared car in advance, and having plans including other modes are more appreciated, making hubs in high-demand areas and Mobility-as-a-Service (MaaS) plans very attractive. Finally, in Tel Aviv, our findings highlight the advantages of exploring different pricing schemes and offering dynamic incentives to users for fleet rebalancing to positively contribute to car-sharing subscriptions and ridership
    • …
    corecore